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Abstract

Receiver Operating Characteristic (ROC) analysis
enables fine-tuning of a trained classifier to a desired
performance trade-off situation. ROC estimated from a
finite test set is, however, insufficient for the sake of clas-
sifier comparison as it neglects performance variances.
This research presents a practical algorithm for vari-
ance estimation at individual operating points of ROC
curves or surfaces. It generalizes the threshold averag-
ing of Fawcett et.al. to arbitrary operating point defini-
tion including the weighting-based formulation used in
multi-class ROC analysis. The statistical test compar-
ing performance differences between operating points
of the same curve is illustrated for two-class and multi-
class ROC.

1. Introduction

Receiver Operating Characteristic (ROC) analysis
facilitates fine-tuning of a trained classifier to the
application-specific optimum based on estimation of
performance trade-offs. ROC estimated from a finite
test set is, however, insufficient for the sake of classifier
comparison as it lacks information on performance vari-
ability. Area under ROC curve (AUC), averaged over
multiple cross-validation folds is currently the most
common technique for ROC-based model comparison.
The shortcoming of this approach is that AUC integrates
evidence over all or a subset of operating points. There-
fore, it is of no value for performance variation assess-
ment at a specific operating point, which is a typical
goal of industrial practitioners. In this paper, we de-
scribe the procedure for estimation of ROC with vari-
ances applicable to both two-class and multi-class situ-
ations.

Number of researchers addressed the problem of
variance estimation in ROC analysis. Provost 1998
et al. [6, 2] proposed the vertical averaging where the

true positive rate (TPr) is viewed as a function of the
false positive rate (FPr). However, due to the neces-
sary interpolation, the corresponding “virtual” operat-
ing points cannot yield deterministic decisions. This
problem is alleviated by the threshold averaging ap-
proach of Fawcett et al. [2]. Fawcett proposes to gener-
ate multiple ROC-estimation sets using cross-validation
(with replacement) or bootstrapping and to estimate the
distribution of ROCs. By merge-sorting all thresholds
of all ROCs, a single threshold pool is derived. For each
threshold of the sub-sampled pool, Fawcett looks up
the corresponding thresholds in the original ROCs and
averages the respective error estimates. As the thresh-
old averaging leverages genuine (not virtual) operating
points, it allows one to directly perform decisions at
arbitrary point of the ROC. Disadvantage of this ap-
proach, which motivated our research, is that the algo-
rithm relies on ordering of the soft outputs of the classi-
fier and is thereby applicable only to the two-class prob-
lems using threshold-based decisions.

The contribution of this paper is two-fold. Firstly,
we extend the threshold averaging to arbitrary operat-
ing point definition including the weighting-based for-
mulation used in multi-class ROC analysis. Secondly,
we propose the procedure incorporating both the ROC
construction and ROC variance estimation in a single
cross-validation session. Instead of sampling with re-
placement or bootstrapping, we adopt the n-fold rota-
tion scheme. This allows us to produce a single set of
unbiased soft output estimates using Wolpert’s stacked
generalization technique [9]. The ROC analysis, per-
formed at this stacked generalized set, results in a set of
classifier operating points. Consequently, the per-fold
trained classifiers yield decisions for the respective fold
test sets at the identical set of operating points. This re-
moves the need for operating point ordering or thresh-
old matching. Averaging the error estimates of each
fold, we compute the mean ROC with variances.

In order to illustrate applicability of the operating
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point averaging, we propose the statistical test compar-
ing the operating points on the same ROC. The test en-
ables us to define a subset of the ROC where the per-
formance differences are insignificant with respect to
the operating point of interest. We demonstrate, that
this method may help us to assess whether the available
sample size is sufficient to differentiate between operat-
ing points.

2. Classifier operating points and ROC

Consider a classification problem with C classes,
ω1, ω2, · · · , ωC , with input data x ∈ RD. For the
sake of this discussion, we focus on classifiers produc-
ing soft outputs such as an estimate of class member-
ship probability or distances to the decision boundary.
The output of the trained classifier Ψ is usually a vector
y = {y1, . . . , yC} of continuous values. In case of two-
class problem, the output of the classifier Ψ may be a
scalar y ∈ R.

Decision rule ∆ is a mapping of the soft output y to
the decision Ω:

∆(y | φ) : y → Ω,

where Ω = {ω1, · · · , ωC}. The set of decision rule
parameters φ is called operating point. In case of the
scalar soft output, the operating point may be defined as
φthr = {θ, ωt, ωnt}, where θ denotes the threshold, and
symbols ωt and ωnt refer to the target and non-target
class, specified by the trained classifier Ψ. Assuming
that the classifier output is similarity, the decision func-
tion may be defined as:

∆thr(y | φthr) =

{
ωt if y ≥ θ

ωnt otherwise.
(1)

Operating point for a vector soft output is a set of
per-class weights φw = {w1, . . . , wC}, wc ≥ 0, c =
1, . . . , C. The class assignment is now based on each
output yc multiplied by the corresponding weight wc:

∆w(y | φw) = arg
C

max
c=1

wcyc. (2)

The classical ROC curve depicts the trade-off be-
tween the true positive rate (TPr) and the false positive
rate (FPr) [2]. Other performance measures yield ROC
alternatives, such as the precision-recall operating char-
acteristics adopted for information retrieval [7]. Com-
pared with the ROC analysis, the alternative measures
may introduce new qualities such as sensitivity to class
prior probabilities [4]. For the sake of this discussion,
we adopt a broader definition of ROC as a set of relevant
operating points, selected from a test set, accompanied
with a set of performance measures estimated at these
points.

3. Operating point averaging

Algorithm 1 outlines the proposed ROC estimation
scheme

Algorithm 1 Operating point averaging
1: Input: Labeled dataset, classification algorithm,

number of folds n.
2: Perform n-fold stratified cross-validation. In each

fold use all but one part to train a classifier. Execute
the trained classifier on the fold test set and store the
soft outputs.

3: Collect the per-fold soft outputs into a single set
(stacked generalization).

4: Construct ROC on the stacked generalized outputs.
5: For each operating point φi of the estimated ROC
6: For each fold f = 1, ..., n
7: Perform decisions on the per-fold soft outputs.
8: Estimate confusion matrix using the ground-

truth labels and the decisions.
9: Compute desired performance metrics.

10: Next fold
11: For each performance measure, estimate its

mean and variance at φi.
12: Next operating point
13: Output: Set of operating points Φ, set of perfor-

mance measures with means with variances.

The key aspect of the algorithm is adoption of the n-
fold stratified cross-validation scheme. It allows us to
stack-generalize the soft outputs of classifiers trained in
all folds into a single set [9] and perform the single ROC
analysis on these outputs. Operating points, defined by
the step (4) are then leveraged to estimate the per-fold
performances of interest. The resulting means and stan-
dard deviations of the performances form, together with
the used set of operating points, the resulting ROC.

4. Experiments

4.1. Illustration of operating point averaging

This experiment illustrates the proposed algorithm
for ROC variance estimation on the artificial Highley-
man data set [3, 1]. This data set is composed of two
Gaussian classes with means µ1 = [1, 1] and µ2 = [2, 0]
and covariance matrices Σ1 = [1, 0; 0, 0.25] and Σ2 =
[0.01, 0; 0, 4]. We are interested in estimating ROC for
the Gaussian detector on class 1 using the decision func-
tion in Eq. 1 (ωt = class 1, ωnt = class 2).

We perform 10-fold stratified cross-validation and
for each fold test set collect the probability densities of
the Gaussian model. We sub-sample the unique values



of the 200 soft outputs, available in the stacked gen-
eralized set, and construct the ROC with 30 operating
points. For every point, we perform decisions in each
per-fold set of soft outputs. The estimated ROC com-
posed of the mean FPr and TPr measures and the
standard deviations of the means is presented in Fig-
ure 1.
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Figure 1. Mean ROC with standard devia-
tions of the mean estimated for the Gaus-
sian detector on class 1 of the Highley-
man problem

4.2. Significance test

In order to compare the performance of the same
classifier at two operating points, we need a statisti-
cal test to decide whether performance differences are
significant. Because the performances at two operating
points of the same classifier exhibit statistical depen-
dence, we adopt the t- test for two dependent samples.
Let Xφi and µXφi

denote the performance measure and
true mean performance measure of the classifier at the
operating point φi, i=1,2, respectively. The test statis-
tics for the test with null hypothesis H0 : µXφ1

= µXφ2

against non-directional alternative is [8]:

t =
X̄φ1 − X̄φ2√

s2
X̄φ1

+ s2
X̄φ2

− 2rXφ1Xφ2
(sX̄φ1

)(sX̄φ2
)
. (3)

Here X̄φi
and sX̄φi

denote the estimated mean and stan-
dard deviation computed for the operating point φi, i =
1, 2, and rXφ1Xφ2

represents the estimated coefficient
of correlation between Xφ1 and Xφ2 . If rXφ1Xφ2

= 0
then the test statistic (3) becomes identical to the test
statistic for the t-test using independent samples. The
degree of freedom for the t-test is 2n − 2, where n
is the number of cross-validation folds in Algorithm 1.
We apply the test separately for each performance mea-
sure and thus do not account for possible covariances
between the measures.

Two sub figures in Figure 2 present ROC curves with
variances estimated on the Highleyman dataset with 50
and 200 examples per class, respectively. The ROC
with 30 operating points is generated by thresholding
the Gaussian model output on class 1. On each curve,
we manually select the operating point φs with TPr of
at least 0.9 (cross marker). The above mentioned t-test
is then performed for each ROC comparing the selected
point to every other point on the same curve. The circle
markers denote the operating points for which the null
hypothesis was accepted at the confidence level of 95%.
We conclude that the FPr at these operating points is
not significantly different from the selected one. The
effect of larger sample size may be observed in the sub
figure b). For the larger data set with 200 examples per
class, the selected operating point is significantly differ-
ent from the neighboring points.

4.3. Significance test for three-class ROC

This example illustrates applicability of the proposed
approach in a multi-class situation. In order to facilitate
ROC visualization, we use a three-class problem com-
prising handwritten digit ’2’, ’3’, and ’5’ 1. The digits
are represented by six morphological features. The de-
sign dataset contains 100 examples per class. The stud-
ied algorithm is composed of the PCA feature extraction
projecting the input data into 3D subspace, followed by
the Bayes quadratic classifier (QDC).

The weighting-based decision function is applied,
defined in Equation 2. We estimate the three-class ROC
with variances using the proposed operation point av-
eraging based on 10-fold cross-validation. The ROC
is constructed using the greedy search minimizing the
maximum per-class error2. Starting from 1000 ran-
domly generated weight vectors, five greedy steps are
run each retaining the top 100 operating points with the
smallest maximum per-class error. Figure 3 depicts the
3D ROC visualizing the per-class errors for the subset
of the top 100 returned operating points with lowest per-
class errors. The plot omits the estimated error bars for
the sake of clarity.

Similarly to the previous example, the cross-marker
denotes the manually-selected operating point of inter-
est. In this experiment, we perform the t-test for each of
the three per-class errors. The circle markers highlight
the operating points for which the above-mentioned null
hypothesis got accepted at the 95% confidence level for
all the three per-class errors (AND operator). We con-
clude that the available sample size is insufficient in

1http://archive.ics.uci.edu/ml/datasets/Multiple+Features
2For more robust multi-class ROC estimation algorithm, applica-

ble to large number of classes see [5]
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(a) Design set with 50 samples per class
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(b) Design set with 200 samples per class

Figure 2. Testing statistical significance of differences between FPr of the manually-selected
operating point at TPr=0.9 and the remaining points on the ROC with variances.

order to distinguish differences between the operating
points in the the demarcated neighborhood.
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Figure 3. Testing significance of perfor-
mance differences for three-class ROC

5. Conclusions

In this paper, we provide a general algorithm for es-
timation of ROC with variances at each operating point.
The algorithm bears similarity to the threshold averag-
ing of Fawcett et al. adding two important improve-
ments. Firstly, it is applicable to arbitrary definition of
the operating point and both two-class and multi-class
ROC analysis. Secondly, we illustrate the practical ap-
plicability of the proposed scheme for testing of perfor-
mance differences between operating point of the same
ROC. The proposed test, taking into account dependen-
cies between operating points of the same classifier, en-
ables one to assess whether the available sample size is
sufficient for differentiating between a group of operat-
ing points.
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